

Robot Control featuring Oculus VR
Collaboration of Ian Bryenton, Vince Giordano, Kazhan Sofy, George Larumbe

Advised by Prof. Sharon Perry

The UXA-90 robot is a humanoid shaped robot designed to imitate humanlike

movement. This project was conducted to utilize the UXA-90's functionalities along

with those of the Meta Quest 2 virtual reality (VR) headset to control the UXA-90

through VR and controllers.

1 ABSTRACT
Working on the UXA-90 Robot has been a challenge to say the least. None of us had any

experience working with a robot or an Oculus VR headset. Despite this limitation, we willingly

took on this project topic because we believed it would be a good learning experience.

We were originally planning to program the Aldebaran Nao, but there were difficulties

with locating its battery. After nearly a month of searching, our team decided to shift our focus

over to the UXA-90 Robot instead, as it was in good shape and had everything needed to get up

and running. The Aldebaran Nao, while being relatively simple to control, didn’t have as many

functionalities as the UXA-90 Robot. This was because individual motors & limbs could be

controlled, giving us more options in terms of what we wanted to do with the robot. These

additional functionalities were a result of the previous team creating an API to streamline the

robot’s movement. Before being able to do any robot programming or testing, our group had to

contact the previous users of the robot and revive the API that was created for it. We managed to

contact a member of the previous group that previously worked with the robot, Andrew. With his

help, we were able to revive the API into a new Raspberry Pi. During this period, we came to the

agreement that we wanted to incorporate a VR headset in this project.

The goals that we wanted to accomplish with the robot and VR headset were controlling

where the robot walked via the headset, streaming what the robot sees to the headset, and finally

tracking head and arm movements of the user and relaying them to the robot.

2 TABLE OF CONTENTS

1 Abstract .. 2

2 Table of Contents... 3

3 Research ... 5

3.1 Phases of Development .. 5

3.1.1 Phase 1 .. 5

3.1.2 Phase 2 .. 6

4 Work done by previous group ... 7

5 Research ... 7

5.1 Unity/C# documentation .. 7

6 Application .. 7

6.1 Unity/Code ... 7

6.2 Movement... 8

6.2.1 Walking ... 8

6.2.2 Head movement .. 8

6.2.3 Arm movement ... 8

6.3 Camera ... 8

7 Raspberry PI .. 8

7.1 What we use it for .. 8

8 Oculus VR headset .. 8

8.1 What we use it for .. 9

9 Setup .. 9

9.1 Unity ... 9

9.2 Raspberry pi (our stuff + reference other group) ... 9

9.2.1 Libraries .. 9

9.3 Oculus VR headset ... 9

9.4 UXA-90 (reference other group) .. 9

9.4.1 Accessing the workspace .. 9

9.4.2 Training certification .. 10

9.4.3 Boot-up and Power-off Positions .. 10

9.4.4 Standing Positions ... 10

9.4.5 4.4.3 Packing Up the UXA 90 .. 12

9.4.6 Architectural drawings/Models ... 15

10 Challenges and Assumptions ... 16

11 Version Control (GitHub) .. 16

12 Team Website .. 16

13 Appendix ... 17

13.1 GANTT Chart .. 17

3 RESEARCH

The Robo-builder UXA-90 Humanoid Robot is a robot which is designed to imitate the

skeletal structure of a human body, making it possible to produce humanlike movements.

Various programming sources can be used to control it in many ways. It also contains emotional

gestures and mouth expressions with synchronized sounds. This robot can be used as a platform

for various purposes such as education, research, advertisement, and service.

Before being able to roll into our development phase, we needed to discover the

functionalities and uncover the technical requirements of the UXA-90 robot. The robot would

need to be able to follow motion commands; it would need to be able to process individual motor

requests.

Features

• Well-proportioned, 1m tall

• Fall detection algorithm using 9-axis IMU sensor

• 300FPS vision processing with 320×240 pixels

• Walking algorithm with balancing control

• Can kick a ball and supports soccer mode for competition

• 3W speaker for speech and sounds

• Color and shape recognition

• Real time distance calculations

• Built in get-up function

• Software tool available for motion building

• Motion in synchronicity with sound source

3.1 PHASES OF DEVELOPMENT

3.1.1 Phase 1

We decided to split our goals we planned to accomplish with the robot into two phases.

Phase 1 consisted of basic programming such as programming the robot to walk using the VR

controllers. Phase 2 consisted of more complex developments including streaming the camera to

the VR headset & tracking the users head and arm movement.

For phase 1, we needed to figure out how to make API calls to the raspberry PI using the

inputs from the VR headset controllers. As a proof of concept, we used Unity to map computer

keys to API calls. Once we successfully did that, we worked on receiving inputs from the VR

controller.

This is when some of our first challenges began appearing. With the hardware aspect, we

noticed that if the robot is left in the standing position for too long, the motor of its left knee can

overheat causing the robot to fall over. As a result, we had to turn off the robot in between

testing. This causes an increase in the time it takes to test the robot.

With the software aspect, button presses on the VR headset caused multiple API calls,

input lag between the button presses and robot movement, and IP address changes in the

raspberry Pi. This change of IP addresses in the raspberry pi was an issue that had to be

addressed immediately, as we couldn’t communicate with the robot from Unity. We contacted

Andrew for assistance on automating the IP generation process with a website. For the other

software related bugs, we learned how to use a debugger in Unity to solve those problems.

We felt we had completed phase 1 when the robot could move in all cardinal directions

(except backwards) with minimal input lag from the VR controllers and moved onto phase 2.

3.1.2 Phase 2

Phase 2 started with us attempting to access the robot’s camara. We did this with the help

of Andrew once again. We immediately recognized that the robot’s built in camara was going to

be an issue. The video stream was very laggy and borderline unusable. We decided to buy a

raspberry pi camara to replace it with. This is currently a work in progress.

We then proceeded to move on to the head and hand tracking portion of this project. For

the head, we started by gauging the robot’s head rotation limits. Once that was done, we

determined the possible range of motion for the head, then compared that to how far a person’s

head would typically rotate to make it comfortable. We then mapped robot head rotation to

human head rotation using a simple slope formula to generate the corresponding angle for the

robot. This was necessary due to the headset using values from –1 to 1 and mapping the lowest

robot head angle to –1 then scaling the range to the maximum robot head angle to 1. As of now,

the robot’s head can be fully controlled by the VR headset by simply moving your head.

With that done, we then moved to working on the arm tracking feature. We once again

started by mapping out the rotational limits of the two motors located on either shoulder. We

started with only two of the four motors to simplify the arm movements we would have to track.

This is still a work in progress.

The challenges in this phase were the need to replace the robot’s camera, the robot’s head

rotations controls would sometimes be inverted, the headset’s starting position (origin) would

change if you took off the headset and put it back on in a different position and trying to figure

out how to map complex hand movements. As of right now, we have fixed all the bugs in the

head tracking portion of this project.

4 WORK DONE BY PREVIOUS GROUP

 The work done by the previous group laid the foundation for our project. To increase the

accessibility of the robot, they replaced the Intel NUC that was installed on the robot with a

Raspberry Pi and built a custom REST API to streamline the robot’s functionalities.

Previous Group’s Website: https://4850-red.github.io/red-site/#top

Previous Group’s Report: https://4850-red.github.io/red-

site/assets/files/CDAY%20Final%20Report%20-%20Final.pdf

5 RESEARCH

Andrew and his team provided us with detailed documentation on the UXA-90 Robot,

REST API, and raspberry pi. As a result, this allowed us to completely focus our research on our

project requirements. The majority of the research we conducted was on the innerworkings of

Unity and C# documentation.

5.1 UNITY/C# DOCUMENTATION
Learning Unity was one of the biggest hurdles of this project. None of our team members

had ever worked on any game development related work. Thankfully, Unity provides ample

documentation on setting up the editor, APIs, assets, etc.

We quickly realized that we wouldn’t be able to fully rely on just the Unity documentation.

Unity uses the C# scripting language for everything. When it came to non-game-design related

programing (.NET framework), we used Microsoft’s C# documentation as reference.

6 APPLICATION

6.1 UNITY/CODE
Unity is a game engine designed to develop video games on different platforms, such as

Xbox, PC, and more. It includes extensive libraries developed for assisting game developers in

accomplishing various tasks in their projects. However, for our project, we learned that some of

these libraries could be used to develop an application for VR headsets that would allow us to

send user input to a Raspberry Pi. Additionally, these libraries are universal across VR

platforms, so Unity could generate an application for any given VR platform and the Raspberry

Pi could still translate the commands.

https://4850-red.github.io/red-site/#top
https://4850-red.github.io/red-site/assets/files/CDAY%20Final%20Report%20-%20Final.pdf
https://4850-red.github.io/red-site/assets/files/CDAY%20Final%20Report%20-%20Final.pdf

6.2 MOVEMENT

6.2.1 Walking

• If the user pushes the joystick in any of the cardinal direction the robot will then

take a single step in that direction.

o An API call is made based on the direction input given. For example, if

the joystick is held xto the left, the request sent would be http://[IP-

address]:50000/motion/walk_left.

6.2.2 Head movement

• While the user is wearing the VR headset, any head movements will be tracked

and mapped to the robot’ head.

o Fully operational.

6.2.3 Arm movement

• While the user is holding both controllers, any arm movements will be tracked ad

mapped to the robot’s arms. (To a certain extent)

o Work in progress.

6.3 CAMERA
• The robot’s internal camera is streamed to the VR headset, enabling the user to

see what the robot sees.

o Work in progress.

7 RASPBERRY PI

We are using a Raspberry Pi 4 with Ubuntu 22.04 LTS installed. Robot Operating System

2.0 version Humble and Node.js LTS version 16.

7.1 WHAT WE USE IT FOR
• Making API motor function calls

• Accessing robot’s internal camera

• IP generation

8 OCULUS VR HEADSET

The VR headset used in this project is called the Oculus Quest 2. It was developed by

Reality Labs, a division of Meta. The Oculus Quest 2 accurately tracks the user’s head and body

movements without the need for any external cameras.

8.1 WHAT WE USE IT FOR
• Control where the robot walks using the joysticks on the controller.

• Control functions (sit down, stand up, etc.) using various button inputs from the

controller.

• Control the robot’s head and arm movements via the tracking capabilities of the

Oculus Quest 2.

9 SETUP

9.1 UNITY

9.2 RASPBERRY PI (OUR STUFF + REFERENCE OTHER GROUP)

9.2.1 Libraries

Following are the libraries and programs necessary for the Raspberry Pi to function as intended.

IP-Uploader

The IP-Uploader was a program created by the previous group

9.3 OCULUS VR HEADSET

9.4 UXA-90 (REFERENCE OTHER GROUP)

9.4.1 Accessing the workspace

The UXA 90 is locked with a combination code and kept safe in a case in room J170. It is also

kept under surveillance so that it is not removed from the premises of the campus or used by

unauthorized persons. Access to the robot is granted to the team members under the approval of

professor parry and administration of KSU.

Additionally, room J170 was our designated work room. Here, team members performed all our

project activities including research, testing, and programming throughout the semester. As

enforced by KSU administration, assigned student ids were necessary to gain access to the room

and a timesheet of members check in and check outs were recorded to ensure safety of room and

robot access.

9.4.2 Training certification

Upon learning and mastering the previous group's training certification, our team members

ensured that these safety precautions are to be taken when handling the robot, including creating

a safe environment for the robot to operate in.

• When removing the UXA-90 out from its case, lift using the plywood rest and strings

attached

• Connect the power supply/adapter to check if the power works before using the battery

• Inspect for damages after every use

• Do not place the robot on an elevated surface such as a table to prevent it from falling,

operate it on the floor

• Make sure that the built in fans are not covered to prevent overheating

• Be cautious of movements and motions that may damage the robot

9.4.3 Boot-up and Power-off Positions

• To boot up the robot properly, sit it in the squatting position, then plug in the power

supply and push the power button for 3 seconds.

• While testing the robot, it should be positioned into a squat. Otherwise, if left unattended

it should be turned off.

• To ensure that the robot is properly turned off, ensure the robot is in the squatting

position, hold the power button for 3 seconds and then unplug it from the power supply.

9.4.4 Standing Positions

The UXA 90 has two standing positions. Straight legged and bent knees.

The straight legged position is for longer periods of standing.

The bent knees position is when the robot is prepared to start walking.

Please note, the robot should not be standing in either position for long. If you want it still

powered on, but you need to wait before testing it again, have it squat.

UXA 90 Robot Squatting

(UXA 90 standing straight legged)

UXA 90 Standing Knees Bent

9.4.5 Packing Up the UXA 90

After properly shutting down the UXA 90, lay it down on the wooden board outside of the

crate. Ensure that the head is placed on the end with the 2 strands of rope and the feet lay on

the end with one strand.

UXA-90 on the wooden board

Next, carefully lift the UXA 90 and place it in the crate.

UXA-90 laying properly in the crate

Finally, place foam padding under the UXA 90’s head and around the robot as you see fit. Then,

fill in the gaps with the miscellaneous equipment.

How the UXA-90 looks before closing case

9.4.6 Architectural drawings/Models

Flow chart of the UXA-90 project

10 CHALLENGES AND ASSUMPTIONS

Working on a project that involves a robot, Unity, and VR headset is undoubtedly going

to pose several challenges for any team. These challenges were only magnified by the fact that

none of us had ever worked with any of these technologies. As a result, we had to overcome a

massive learning curve throughout the development stage.

Another challenge the team faced was working with a very outdated robot. Working with

outdated technology always presents challenges, as compatibility issues with newer software and

outdated hardware leads to limited functionality. While the Raspberry Pi that was integrated by

the previous team addressed a lot of these issues, we were very limited with what we could

program the robot do.

Furthermore, the fact that development could only be done in our assigned room limited

our productivity. This restriction limited the team's ability to work remotely or collaborate with

other team members in different locations.

Despite these challenges, we were able to learn quickly and adapt to the new

technologies. We managed to coordinate everybody’s busy schedules during the development

phase of the project effectively. Overcoming these challenges was imperative to delivering a

successful project, and we believe we did just that.

11 VERSION CONTROL (GITHUB)

https://github.com/CS4850-UXA90

12 TEAM WEBSITE

https://cs4850-uxa90.github.io/CS4850-Spring23-Robot/

https://github.com/CS4850-UXA90
https://cs4850-uxa90.github.io/CS4850-Spring23-Robot/

13 APPENDIX

13.1 GANTT CHART

